summaryrefslogtreecommitdiff
path: root/src/send.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/send.go')
-rw-r--r--src/send.go362
1 files changed, 0 insertions, 362 deletions
diff --git a/src/send.go b/src/send.go
deleted file mode 100644
index 7488d3a..0000000
--- a/src/send.go
+++ /dev/null
@@ -1,362 +0,0 @@
-package main
-
-import (
- "encoding/binary"
- "golang.org/x/crypto/chacha20poly1305"
- "golang.org/x/net/ipv4"
- "golang.org/x/net/ipv6"
- "net"
- "sync"
- "sync/atomic"
- "time"
-)
-
-/* Outbound flow
- *
- * 1. TUN queue
- * 2. Routing (sequential)
- * 3. Nonce assignment (sequential)
- * 4. Encryption (parallel)
- * 5. Transmission (sequential)
- *
- * The functions in this file occur (roughly) in the order in
- * which the packets are processed.
- *
- * Locking, Producers and Consumers
- *
- * The order of packets (per peer) must be maintained,
- * but encryption of packets happen out-of-order:
- *
- * The sequential consumers will attempt to take the lock,
- * workers release lock when they have completed work (encryption) on the packet.
- *
- * If the element is inserted into the "encryption queue",
- * the content is preceded by enough "junk" to contain the transport header
- * (to allow the construction of transport messages in-place)
- */
-
-type QueueOutboundElement struct {
- dropped int32
- mutex sync.Mutex
- buffer *[MaxMessageSize]byte // slice holding the packet data
- packet []byte // slice of "buffer" (always!)
- nonce uint64 // nonce for encryption
- keyPair *KeyPair // key-pair for encryption
- peer *Peer // related peer
-}
-
-func (peer *Peer) FlushNonceQueue() {
- elems := len(peer.queue.nonce)
- for i := 0; i < elems; i++ {
- select {
- case <-peer.queue.nonce:
- default:
- return
- }
- }
-}
-
-func (device *Device) NewOutboundElement() *QueueOutboundElement {
- return &QueueOutboundElement{
- dropped: AtomicFalse,
- buffer: device.pool.messageBuffers.Get().(*[MaxMessageSize]byte),
- }
-}
-
-func (elem *QueueOutboundElement) Drop() {
- atomic.StoreInt32(&elem.dropped, AtomicTrue)
-}
-
-func (elem *QueueOutboundElement) IsDropped() bool {
- return atomic.LoadInt32(&elem.dropped) == AtomicTrue
-}
-
-func addToOutboundQueue(
- queue chan *QueueOutboundElement,
- element *QueueOutboundElement,
-) {
- for {
- select {
- case queue <- element:
- return
- default:
- select {
- case old := <-queue:
- old.Drop()
- default:
- }
- }
- }
-}
-
-func addToEncryptionQueue(
- queue chan *QueueOutboundElement,
- element *QueueOutboundElement,
-) {
- for {
- select {
- case queue <- element:
- return
- default:
- select {
- case old := <-queue:
- // drop & release to potential consumer
- old.Drop()
- old.mutex.Unlock()
- default:
- }
- }
- }
-}
-
-/* Reads packets from the TUN and inserts
- * into nonce queue for peer
- *
- * Obs. Single instance per TUN device
- */
-func (device *Device) RoutineReadFromTUN() {
-
- elem := device.NewOutboundElement()
-
- logDebug := device.log.Debug
- logError := device.log.Error
-
- logDebug.Println("Routine, TUN Reader started")
-
- for {
-
- // read packet
-
- offset := MessageTransportHeaderSize
- size, err := device.tun.device.Read(elem.buffer[:], offset)
-
- if err != nil {
- logError.Println("Failed to read packet from TUN device:", err)
- device.Close()
- return
- }
-
- if size == 0 || size > MaxContentSize {
- continue
- }
-
- elem.packet = elem.buffer[offset : offset+size]
-
- // lookup peer
-
- var peer *Peer
- switch elem.packet[0] >> 4 {
- case ipv4.Version:
- if len(elem.packet) < ipv4.HeaderLen {
- continue
- }
- dst := elem.packet[IPv4offsetDst : IPv4offsetDst+net.IPv4len]
- peer = device.routing.table.LookupIPv4(dst)
-
- case ipv6.Version:
- if len(elem.packet) < ipv6.HeaderLen {
- continue
- }
- dst := elem.packet[IPv6offsetDst : IPv6offsetDst+net.IPv6len]
- peer = device.routing.table.LookupIPv6(dst)
-
- default:
- logDebug.Println("Received packet with unknown IP version")
- }
-
- if peer == nil {
- continue
- }
-
- // insert into nonce/pre-handshake queue
-
- if peer.isRunning.Get() {
- peer.timer.handshakeDeadline.Reset(RekeyAttemptTime)
- addToOutboundQueue(peer.queue.nonce, elem)
- elem = device.NewOutboundElement()
- }
- }
-}
-
-/* Queues packets when there is no handshake.
- * Then assigns nonces to packets sequentially
- * and creates "work" structs for workers
- *
- * Obs. A single instance per peer
- */
-func (peer *Peer) RoutineNonce() {
- var keyPair *KeyPair
-
- defer peer.routines.stopping.Done()
-
- device := peer.device
- logDebug := device.log.Debug
- logDebug.Println("Routine, nonce worker, started for peer", peer.String())
-
- peer.routines.starting.Done()
-
- for {
- NextPacket:
- select {
- case <-peer.routines.stop.Wait():
- return
-
- case elem := <-peer.queue.nonce:
-
- // wait for key pair
-
- for {
- keyPair = peer.keyPairs.Current()
- if keyPair != nil && keyPair.sendNonce < RejectAfterMessages {
- if time.Now().Sub(keyPair.created) < RejectAfterTime {
- break
- }
- }
-
- peer.signal.handshakeBegin.Send()
-
- logDebug.Println("Awaiting key-pair for", peer.String())
-
- select {
- case <-peer.signal.newKeyPair.Wait():
- case <-peer.signal.flushNonceQueue.Wait():
- logDebug.Println("Clearing queue for", peer.String())
- peer.FlushNonceQueue()
- goto NextPacket
- case <-peer.routines.stop.Wait():
- return
- }
- }
-
- // populate work element
-
- elem.peer = peer
- elem.nonce = atomic.AddUint64(&keyPair.sendNonce, 1) - 1
- elem.keyPair = keyPair
- elem.dropped = AtomicFalse
- elem.mutex.Lock()
-
- // add to parallel and sequential queue
-
- addToEncryptionQueue(device.queue.encryption, elem)
- addToOutboundQueue(peer.queue.outbound, elem)
- }
- }
-}
-
-/* Encrypts the elements in the queue
- * and marks them for sequential consumption (by releasing the mutex)
- *
- * Obs. One instance per core
- */
-func (device *Device) RoutineEncryption() {
-
- var nonce [chacha20poly1305.NonceSize]byte
-
- logDebug := device.log.Debug
- logDebug.Println("Routine, encryption worker, started")
-
- for {
-
- // fetch next element
-
- select {
- case <-device.signal.stop.Wait():
- logDebug.Println("Routine, encryption worker, stopped")
- return
-
- case elem := <-device.queue.encryption:
-
- // check if dropped
-
- if elem.IsDropped() {
- continue
- }
-
- // populate header fields
-
- header := elem.buffer[:MessageTransportHeaderSize]
-
- fieldType := header[0:4]
- fieldReceiver := header[4:8]
- fieldNonce := header[8:16]
-
- binary.LittleEndian.PutUint32(fieldType, MessageTransportType)
- binary.LittleEndian.PutUint32(fieldReceiver, elem.keyPair.remoteIndex)
- binary.LittleEndian.PutUint64(fieldNonce, elem.nonce)
-
- // pad content to multiple of 16
-
- mtu := int(atomic.LoadInt32(&device.tun.mtu))
- rem := len(elem.packet) % PaddingMultiple
- if rem > 0 {
- for i := 0; i < PaddingMultiple-rem && len(elem.packet) < mtu; i++ {
- elem.packet = append(elem.packet, 0)
- }
- }
-
- // encrypt content and release to consumer
-
- binary.LittleEndian.PutUint64(nonce[4:], elem.nonce)
- elem.packet = elem.keyPair.send.Seal(
- header,
- nonce[:],
- elem.packet,
- nil,
- )
- elem.mutex.Unlock()
- }
- }
-}
-
-/* Sequentially reads packets from queue and sends to endpoint
- *
- * Obs. Single instance per peer.
- * The routine terminates then the outbound queue is closed.
- */
-func (peer *Peer) RoutineSequentialSender() {
-
- defer peer.routines.stopping.Done()
-
- device := peer.device
-
- logDebug := device.log.Debug
- logDebug.Println("Routine, sequential sender, started for", peer.String())
-
- peer.routines.starting.Done()
-
- for {
- select {
-
- case <-peer.routines.stop.Wait():
- logDebug.Println(
- "Routine, sequential sender, stopped for", peer.String())
- return
-
- case elem := <-peer.queue.outbound:
- elem.mutex.Lock()
- if elem.IsDropped() {
- continue
- }
-
- // send message and return buffer to pool
-
- length := uint64(len(elem.packet))
- err := peer.SendBuffer(elem.packet)
- device.PutMessageBuffer(elem.buffer)
- if err != nil {
- logDebug.Println("Failed to send authenticated packet to peer", peer.String())
- continue
- }
- atomic.AddUint64(&peer.stats.txBytes, length)
-
- // update timers
-
- peer.TimerAnyAuthenticatedPacketTraversal()
- if len(elem.packet) != MessageKeepaliveSize {
- peer.TimerDataSent()
- }
- peer.KeepKeyFreshSending()
- }
- }
-}