summaryrefslogtreecommitdiff
path: root/src/handshake.go
blob: 8f8e2f9a80399efc036c8e45ced6b16f83d8dcd1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
package main

import (
	"bytes"
	"encoding/binary"
	"net"
	"sync/atomic"
	"time"
)

/* Sends a keep-alive if no packets queued for peer
 *
 * Used by initiator of handshake and with active keep-alive
 */
func (peer *Peer) SendKeepAlive() bool {
	if len(peer.queue.nonce) == 0 {
		select {
		case peer.queue.nonce <- []byte{}:
			return true
		default:
			return false
		}
	}
	return true
}

func StoppedTimer() *time.Timer {
	timer := time.NewTimer(time.Hour)
	if !timer.Stop() {
		<-timer.C
	}
	return timer
}

/* Called when a new authenticated message has been send
 *
 * TODO: This might be done in a faster way
 */
func (peer *Peer) KeepKeyFreshSending() {
	send := func() bool {
		peer.keyPairs.mutex.RLock()
		defer peer.keyPairs.mutex.RUnlock()

		kp := peer.keyPairs.current
		if kp == nil {
			return false
		}

		if !kp.isInitiator {
			return false
		}

		nonce := atomic.LoadUint64(&kp.sendNonce)
		if nonce > RekeyAfterMessages {
			return true
		}
		return time.Now().Sub(kp.created) > RekeyAfterTime
	}()
	if send {
		sendSignal(peer.signal.handshakeBegin)
	}
}

/* This is the state machine for handshake initiation
 *
 * Associated with this routine is the signal "handshakeBegin"
 * The routine will read from the "handshakeBegin" channel
 * at most every RekeyTimeout or with exponential backoff
 *
 * Implements exponential backoff for retries
 */
func (peer *Peer) RoutineHandshakeInitiator() {
	work := new(QueueOutboundElement)
	device := peer.device
	buffer := make([]byte, 1024)
	logger := device.log.Debug
	timeout := time.NewTimer(time.Hour)

	logger.Println("Routine, handshake initator, started for peer", peer.id)

	func() {
		for {
			var attempts uint
			var deadline time.Time

			select {
			case <-peer.signal.handshakeBegin:
			case <-peer.signal.stop:
				return
			}

		HandshakeLoop:
			for run := true; run; {
				// clear completed signal

				select {
				case <-peer.signal.handshakeCompleted:
				case <-peer.signal.stop:
					return
				default:
				}

				// queue handshake

				err := func() error {
					work.mutex.Lock()
					defer work.mutex.Unlock()

					// create initiation

					msg, err := device.CreateMessageInitiation(peer)
					if err != nil {
						return err
					}

					// marshal

					writer := bytes.NewBuffer(buffer[:0])
					binary.Write(writer, binary.LittleEndian, msg)
					work.packet = writer.Bytes()
					peer.mac.AddMacs(work.packet)
					peer.InsertOutbound(work)
					return nil
				}()
				if err != nil {
					device.log.Error.Println("Failed to create initiation message:", err)
					break
				}
				if attempts == 0 {
					deadline = time.Now().Add(MaxHandshakeAttemptTime)
				}

				// set timeout

				if !timeout.Stop() {
					select {
					case <-timeout.C:
					default:
					}
				}
				timeout.Reset((1 << attempts) * RekeyTimeout)
				attempts += 1
				device.log.Debug.Println("Handshake initiation attempt", attempts, "queued for peer", peer.id)
				time.Sleep(RekeyTimeout)

				// wait for handshake or timeout

				select {
				case <-peer.signal.stop:
					return

				case <-peer.signal.handshakeCompleted:
					break HandshakeLoop

				default:
					select {

					case <-peer.signal.stop:
						return

					case <-peer.signal.handshakeCompleted:
						break HandshakeLoop

					case <-timeout.C:
						nextTimeout := (1 << attempts) * RekeyTimeout
						if deadline.Before(time.Now().Add(nextTimeout)) {
							// we do not have time for another attempt
							peer.signal.flushNonceQueue <- struct{}{}
							if !peer.timer.sendKeepalive.Stop() {
								<-peer.timer.sendKeepalive.C
							}
							break HandshakeLoop
						}
					}
				}
			}
		}
	}()

	logger.Println("Routine, handshake initator, stopped for peer", peer.id)
}

/* Handles incomming packets related to handshake
 *
 *
 */
func (device *Device) HandshakeWorker(queue chan struct {
	msg     []byte
	msgType uint32
	addr    *net.UDPAddr
}) {
	for {
		elem := <-queue

		switch elem.msgType {
		case MessageInitiationType:
			if len(elem.msg) != MessageInitiationSize {
				continue
			}

			// check for cookie

			var msg MessageInitiation

			binary.Read(nil, binary.LittleEndian, &msg)

		case MessageResponseType:
			if len(elem.msg) != MessageResponseSize {
				continue
			}

			// check for cookie

		case MessageCookieReplyType:
			if len(elem.msg) != MessageCookieReplySize {
				continue
			}

		default:
			device.log.Error.Println("Invalid message type in handshake queue")
		}
	}
}