aboutsummaryrefslogtreecommitdiff
path: root/src/send.go
blob: ab75750f13669c63a35d80408ced5dd0151b8025 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
package main

import (
	"encoding/binary"
	"golang.org/x/crypto/chacha20poly1305"
	"net"
	"sync"
)

/* Handles outbound flow
 *
 * 1. TUN queue
 * 2. Routing (sequential)
 * 3. Nonce assignment (sequential)
 * 4. Encryption (parallel)
 * 5. Transmission (sequential)
 *
 * The order of packets (per peer) is maintained.
 * The functions in this file occure (roughly) in the order packets are processed.
 */

/* A work unit
 *
 * The sequential consumers will attempt to take the lock,
 * workers release lock when they have completed work on the packet.
 */
type QueueOutboundElement struct {
	mutex   sync.Mutex
	packet  []byte
	nonce   uint64
	keyPair *KeyPair
}

func (peer *Peer) FlushNonceQueue() {
	elems := len(peer.queue.nonce)
	for i := 0; i < elems; i += 1 {
		select {
		case <-peer.queue.nonce:
		default:
			return
		}
	}
}

func (peer *Peer) InsertOutbound(elem *QueueOutboundElement) {
	for {
		select {
		case peer.queue.outbound <- elem:
		default:
			select {
			case <-peer.queue.outbound:
			default:
			}
		}
	}
}

/* Reads packets from the TUN and inserts
 * into nonce queue for peer
 *
 * Obs. Single instance per TUN device
 */
func (device *Device) RoutineReadFromTUN(tun TUNDevice) {
	device.log.Debug.Println("Routine, TUN Reader: started")
	for {
		// read packet

		device.log.Debug.Println("Read")
		packet := make([]byte, 1<<16) // TODO: Fix & avoid dynamic allocation
		size, err := tun.Read(packet)
		if err != nil {
			device.log.Error.Println("Failed to read packet from TUN device:", err)
			continue
		}
		packet = packet[:size]
		if len(packet) < IPv4headerSize {
			device.log.Error.Println("Packet too short, length:", len(packet))
			continue
		}

		// lookup peer

		var peer *Peer
		switch packet[0] >> 4 {
		case IPv4version:
			dst := packet[IPv4offsetDst : IPv4offsetDst+net.IPv4len]
			peer = device.routingTable.LookupIPv4(dst)
			device.log.Debug.Println("New IPv4 packet:", packet, dst)

		case IPv6version:
			dst := packet[IPv6offsetDst : IPv6offsetDst+net.IPv6len]
			peer = device.routingTable.LookupIPv6(dst)
			device.log.Debug.Println("New IPv6 packet:", packet, dst)

		default:
			device.log.Debug.Println("Receieved packet with unknown IP version")
			return
		}

		if peer == nil {
			device.log.Debug.Println("No peer configured for IP")
			continue
		}

		// insert into nonce/pre-handshake queue

		for {
			select {
			case peer.queue.nonce <- packet:
			default:
				select {
				case <-peer.queue.nonce:
				default:
				}
				continue
			}
			break
		}
	}
}

/* Queues packets when there is no handshake.
 * Then assigns nonces to packets sequentially
 * and creates "work" structs for workers
 *
 * TODO: Avoid dynamic allocation of work queue elements
 *
 * Obs. A single instance per peer
 */
func (peer *Peer) RoutineNonce() {
	var packet []byte
	var keyPair *KeyPair

	for {

		// wait for packet

		if packet == nil {
			select {
			case packet = <-peer.queue.nonce:
			case <-peer.signal.stopSending:
				close(peer.queue.outbound)
				return
			}
		}

		// wait for key pair

		for keyPair == nil {
			peer.signal.newHandshake <- true
			select {
			case <-peer.keyPairs.newKeyPair:
				keyPair = peer.keyPairs.Current()
				continue
			case <-peer.signal.flushNonceQueue:
				peer.FlushNonceQueue()
				packet = nil
				continue
			case <-peer.signal.stopSending:
				close(peer.queue.outbound)
				return
			}
		}

		// process current packet

		if packet != nil {

			// create work element

			work := new(QueueOutboundElement) // TODO: profile, maybe use pool
			work.keyPair = keyPair
			work.packet = packet
			work.nonce = keyPair.sendNonce
			work.mutex.Lock()

			packet = nil
			keyPair.sendNonce += 1

			// drop packets until there is space

			func() {
				for {
					select {
					case peer.device.queue.encryption <- work:
						return
					default:
						drop := <-peer.device.queue.encryption
						drop.packet = nil
						drop.mutex.Unlock()
					}
				}
			}()
			peer.queue.outbound <- work
		}
	}
}

/* Encrypts the elements in the queue
 * and marks them for sequential consumption (by releasing the mutex)
 *
 * Obs. One instance per core
 */
func (device *Device) RoutineEncryption() {
	var nonce [chacha20poly1305.NonceSize]byte
	for work := range device.queue.encryption {

		// pad packet

		padding := device.mtu - len(work.packet)
		if padding < 0 {
			// drop
			work.packet = nil
			work.mutex.Unlock()
		}
		for n := 0; n < padding; n += 1 {
			work.packet = append(work.packet, 0)
		}

		// encrypt

		binary.LittleEndian.PutUint64(nonce[4:], work.nonce)
		work.packet = work.keyPair.send.Seal(
			work.packet[:0],
			nonce[:],
			work.packet,
			nil,
		)
		work.mutex.Unlock()
	}
}

/* Sequentially reads packets from queue and sends to endpoint
 *
 * Obs. Single instance per peer.
 * The routine terminates then the outbound queue is closed.
 */
func (peer *Peer) RoutineSequential() {
	for work := range peer.queue.outbound {
		work.mutex.Lock()
		func() {
			peer.mutex.RLock()
			defer peer.mutex.RUnlock()
			if work.packet == nil {
				return
			}
			if peer.endpoint == nil {
				return
			}
			peer.device.conn.WriteToUDP(work.packet, peer.endpoint)
			peer.timer.sendKeepalive.Reset(peer.persistentKeepaliveInterval)
		}()
		work.mutex.Unlock()
	}
}